15.9  Deadlocks in Distributed Systems 701

Figure N A global wait-for graph.
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locking protocol and the schedule shows that the transactions will be dead-
locked. The global wait-for graph for the situation at step ss of the schedule
is shown in Figure N. - W

One simple method of recovering from a potential deadlock situation is to allow
a transaction to wait for a finite amount of time for an incompatibly locked data item.
If at the end of that time the resource is still locked, the transaction is aborted. The
period of time should not be too short or too long. An unduly short period would
likely cause the transaction to be aborted, since the resource may not be released.
An unnecessarily long period would mean that these transactions would hold the
resources already acquired, causing further transactions to deadlock. With this
scheme, only transactions that are blocked are aborted.

The deadlock detection scheme allows deadlock to occur, but makes provision
to detect the existence of a deadlock by the presence of a chain of transactions, each
waiting for data items locked by the next transaction in the chain. The detection of
deadlock in a distributed system requires the generation of not only a local wait-for
graph (LWFG) for each site, but also a global wait-for graph (GWFG) for the entire
system. Note that here we are assuming that a transaction can request one or more
data items at a time and become blocked if it has at least one outstanding request for
a data item. Under this assumption, a cycle in the global wait-for graph indicates a
deadlock situation. Figure N shows the GWFG for the execution schedule of Fig-
ure M.

We see from Figure N that even though there are no cycles in the LWFG at
each of two sites, there is a cycle in the GWFG and this indicates the existence of a
deadlock. The disadvantage of the GWFG is the overhead required in generating such
graphs. Furthermore, a deadlock detection site has to be chosen where the GWFG is
created. This site becomes the location for detecting deadlocks and selecting the
transactions that have to be aborted to recover from deadlock. One of the problems
with such an approach is that if the messages indicating which transactions are wait-
ing for which resources and the release of the resources by transactions are received
out of order, then the deadlock detection site may conclude that there is a deadlock.
However in reality no such deadlock exists. The erroneous deadlock that was de-
tected is called a phantom deadlock. Example 15.16 shows how a phantom dead-
lock could resuit.

Example 15.16 | Consider the GWFG of Figure O. Suppose the graph is maintained at site
S. Suppose there is a request from T; for a data item locked by T, at about
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Figure O A global wait-for graph.
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the same time as T, releases the data item it locked. The release of the data
item allows T to proceed and causes a removal of the edge (T, T,). If the
fact that the edge (T¢,T,) is removed reaches site S after it learns of the
addition of the edge (Ts,Ts), then a phantom deadlock would be detected.

Thi Cycles (TI,T3,T8,T9,T6,T4,T1) and (T|,Tz,Tg,Tg,Tg,T(),T4,T|) do not, in
fact, exist. W

Instead of using a central site for deadlock detection, it is possible to use a
distributed deadlock detection scheme. In one such approach, the LWFGs are broad-
cast to all sites. Each such site generates the portion of the GWFG that is of concern
to it. If one of the site detects a deadlock, it tries to resolve it by aborting one or
more of its transactions. The disadvantage of this approach is that the deadlock may
not be detected for some time, and since the broadcast of the LWFGs is asynchron-
ous, a phantom deadlock could be detected and lead to unnecessary transaction
aborts.

Below we give another scheme, known as a probe computation algorithm, for
distributed deadlock detection. It is from a class of algorithms called the edge-

chasing algorithms. For other deadlock detection algorithms, refer to the biblio-
graphic notes.

Deadlock Detection by Probe Computation

In the edge-chasing algorithms, the cycle in the GWFG is detected not by actually
creating the graph but by sending messages along the edges of the graph. Such mes-
sages, called probes, are different from the other- messages discussed above, and
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Figure 15.9

also distinct from resource requests and grant messages. As before, instead of refer-
ring to transactions, let us use the process concept, which encompasses the interac-
tion between a transaction at a site with the TM-at the site. Figure T5:9_shows an
example of a number of such processes in # GWFG in a deadlock situation. Let us
examine how probe computation is used to detect the deadlock.

An edge from a process in one site to a process in a distinct site is called an
intercontroller edge. An outgoing edge for a process is an intercontroller edge that
can be reached from the process by following edges in the local part of the GWFG.
The probe is initiated by a blocked process and it is referred to as the initiator of the
probe. A probe is made up of a three-tuple (i, j, k) and indicates that it is a probe
for process T; and the probe has been sent along the outgoing edge (T;, T,). Here

. process T; is blocked by process T, and T; is blocked, directly or via a chain of

intermediate processes, by T;. If the initiator of the probe receives a matching probe,
we can conclude that the blocked process is in a cycle in the GWFG. Thus, if process

_Ti, the initiator of a probe, receives a probe (i, x, i), it is in a cycle. An active

precess simply discards the probes. A blocked process propagates the probe along all

its outgoing edges. This blocked process will send a probe (i, j, k) tu the process at’

node k, along outgoing edge (T;, T,), under the following conditions: (a) the process
T; is blocked, (b) T; is waiting for the process Ty, (c) T; is blocked by T;. Note
that a site that has several blocked processes may initiate several probes. Similarly,
several probes may be initiated in sequence by a blocked process if it has sever-
al outstanding requests. Each such probe is distinctly identifiable by the inj
tiator. ’

Detection of deadlock using probe computation.
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A blocked process, 1y, accepts only meaningful probes; others are discarded on
receipt. A probe (i,j,k) is said to be meaningful under the following conditions: (a)
the process Ty is blocked, and (b) it was unaware that T; was dependent on it (that
Ty is in a chain with T;). Condition (b) ensures that nonmeaningful probes are sup-
pressed and, consequently, only one probe per cycle is propagated. Receipt of a
meaningful probe leads to the deduction that T; is dependent on T, and further probes
(i,j,k) will be discarded (they will not longer be meaningful). On receipt of a nean-
ingful probe, Ty sends, probes (i,p,q) on all its outgoing edges (T, Ty).

If a blocked process, T;, recci-2s a probe (i,j,i), we can deduce that it is dead-
locked. The probe computation algorithms are given below and Example 15.17

- illustrates its use in the detection of 2 distributed deadlock.

Algorithm
15.1

; mmsxmtaprobe (x,,,k,}% G

Algorithm i -
15.2 AthkodPrmuﬂtspomme“*
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Example 15.17 Consider the situation depicted in the GWFG of Figure 15.9. We have pro-
cesses T;, Tj, Ty, Ty, Ty, T; in a deadlock situation. The probe is initiated,
say, by T;. It sends a probe (i,j,k) along its outgoing edge (j,k) to process
Ty at site 2. When T, receives this probe it finds it meaningful since it was
unaware that T; was blocked by it. It knows that T; is blocked by it since it
has not released the data item requested by T;. Ty, in turn, sends a probe
(i,q,r) along its outgoing edge (Ty,T,) to T, at site 3. T, finds this probe
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meaningful and, in turn, learns that T; is dependent on it. T, sends the probe
"(i,r,i) along its outgoing edge (r, i) to T;. On receipt of this probe T; learns
that it is in a closed cycle in the GWFG. Note that a probe (i,s,p) along the
outgoing edge (T,,T,) will be eventually ignored by process T, and will not

Deadlock Prevention

The deadlock prevention method can be used in a distributed system. For instance,
the timestamp method could be:applied to prevent deadlock from occurring by abort-
ing the transactions that could potentially cause deadlock. The wait-die scheme and
the wound-wait scheme could be used to abort appropriate transactions as in the
centralized system. The aborted transactions are reinitiated with the original time-
stamp to allow them to eventually run to completion. The timestamp ‘method does
not require that any messages be transmitted over the network; however being a
deadlock prevention scheme it causes unnecessary transaction aborts.

Security and Protection

Security and protection problems are similar to those in the centralized database with
remote access. However, the problem is exacerbated by the fact that there is in-
creased communication, including site-to-site transfer of large amounts of data. This -
calls for appropriate identification and authentication of the user and the site. To
prevent eavesdropping on the communication lines by intruders, these lines must be
secure and the message should be encrypted.

The fact that data is replicated in the database means that a user can access any
one of these replicated copies. Security dictates that the authorization rules for access
and update of certain parts of this data be verified before user action is allowed. If
the authorization rules are centralized, the authorization validation will generate
traffic and the central site would become the bottleneck. Another approach is to
replicate the authorization rules. Full replication allows local validation of user action
at the time of compilation or execution of the user query. However, full replication
adds unnecessary update overheads. Still another approach involves replicating, at a
given site, only those authorization rules that pertain to the data items at the site.
The maintenance problem is improved but validation of a user’s action for a remote
site can only be done at the remote site during an advance compilation or execution
stage of the user’s query. Considerable computing efforts are wasted, since a query
is aborted on discovery that the query lacks authorization for particular data items.

Homogeneous and Heterogeneous Systems

In general, a distributed database system may be either homogeneous (i. €., all local
database systems have the same underlying data model) or heterogeneous (.e., local
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is therefore possible for local objects to have their catalog entries at a remote site.
Consequently data definition operations may be nonlocal.

SDD-1 uses a centralized control scheme and a given transaction is supervised
by a single transaction module. The transaction execution is in three phases, read,
execute, and write. All reads for a transaction are performed at the beginning of the
transaction; all writes are done at the end.

The read-set, the set of fragments to be read by the transaction, are determined
by the TM. SDD-1 provides fragmentation transparencies and the set of fragments
to be accessed for the read-set of the.transaction are determined by it. This operation
is called materialization. The TM then coordinates the data modules at various sites
to transfer the required data into the workspace used by the transaction.

SDD-1 uses the conservative timestamp method for concurrency control. We
briefly describe the conservative timestamp scheme here. The basic timestamp
method, discussed in Chapter 12, suffers from costly restarts.

A pessimistic approach is taken by the conservative timestamp method, which
vauses possible delays until no conflict with a transaction can possibly happen. This
is done by buffering younger transactions until all possible older transactions have
been executed. At some point the system must decide that no older transaction is
likely to be received. A simple implementation of the idea requires that a site send
all requests to another site in timestamp order and that the network deliver messages
in the order that they were sent. In this manner, if site j receives a message from site
i with a timestamp t;, site j knows that it will not receive messages from site i with
timestamps less than t;,.

At site j, instead of keeping the timestamps of the last read or write operation

on data item X, we now keep the oldest timestamp for the buffered read and write

operations for data item X, say Xpmiv and Xwwmn, respectively. Site j, having re-
ceived messages from all other sites, can proceed to cxecute an operation. The
method is' implemented as follows:

while not at least one request from each site wait.
READ
if Xpmin < Xwmin
then the read is older than any of the write re-
quests on X, i.e., all older transactions that
could update X have been executed and thus the
read operation can be executed and Xgmin updated.
else there is at least one older update request
. and the read is buffered.
WRITE
i Xwmin < XgMiN
then all read requests for the current data value
have been executed and the write operation can be
executed; the value of Xy is updated.
else there is at least one older transaction that has
still to read the current value and thus the write
remains buffered.

This. simple method suffers from the fact that at least one request must be re--
ceived from each site. So that the system will not remain blocked, each’ active site
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that lacks an action request sends a null request message. In this manner, the buffer
from zach site would. at least have a request, albeit null. ‘

Major disadvantages of the conservative timestamp method are the long waiting
periods and consequent low concurrency. The improvements suggested to overcome.
these shortcomings include the use of transaction classes and conflict analysis
graphs.

All transactions are categorized uuv tiasses. Those transactions that are likely
to conflict belong to the same class. A transaction’s read requests can be termed its
read-set and the write requests, its write-set. Two transactions conflict if the intersec-
tion of their write-sets or the read-set of one and the write-set of the other is non-
empty. For instance, let the read and write sets of transaction T, be RS, and WS,, re-
spectively, and those for T, be RS, and WS,. Then transactions T; and-T, conflict if

RS, N WS, + &, or
WS, NRS; # &, or
WS, NWS, #+ &

Transaction requests waiting in buffers need only be compared with requests
. from conflicting transactions. Two requests from nonconflicting transactions can pro-
ceed concurrently, thus improving concurrency.

Whether or not transactions conflict can be decided using conflict graph analysis
techniques in which arcs can be labeled to define the type of conflict (read-write or
write-write).

The execute phase is performed by a compilé-and-go approach. The access plan
generated is executed and the supervision is by the TM at the site of the query.
Program compilation uses semijoins extensively in optimization. The write phasc«
begins by the distribution of the updated fragments to all data modules containin :

case of coordinator failure.

R* (see Figure 15.12) is an experimental adaptation of the System R relational
DBMS to the distributed environment. The architecture of R* is based on System R
architecture. It is claimed that major modifications were made to the relation data’
storage (RSS*) and transaction manager (TM*) systems. A distributed communica-
tions (DC*) component was added.

R* runs under IBM’s Customer Information Control System (CICS). CICS is
responsible for handling online users and could entail running application programs
or provide support for interactive queries. CICS is also responsible for intersite mes-
sage communications and interfaces with another CICS at a remote site.

All requests are made at a single site, which becomes the master site. In.com- -
‘mon with System R, queries are compiled rather than interpreted. A distributed com-
pilation scheme is used whergin the master site coordinates the global aspects of
query compilation. The local decisions, including local data structure selections, are
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Figure 15.14 MULTIBASE scheme architecturé (adapted from [Land 82)).
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In a heterogeneous system, the level of performance of the various host DBMSs
may differ considerably. For instance, the same operation on the same data may be
done at varying costs under different DBMSs. This factor would be a consideration
in allocating subtransactions, just as the nearness criteria is used when considering
communication costs. In some cases, a particular host DBMS may not even be able
to perform a specific operation. The above issues are addressed below in the section
on MULTIBASE. If the DDBMS provides a single interface to external users, as is
the common practice, then the network DML should be easy to learn and sufficiently
powerful to satisfy all needs. '

A few heterogeneous DDBMS prototypes have been built. Here we consider
only one of them, a derivative of SDD-1. .

Multibase

The MULTIBASE DDBMS,? developed by Computer Corporation of America, pro-
vides an integrated interface for retrieving data from preexisting, heterogeneous, dis-
tributed databases. Its aim is to present an integrated uniform interface. This is
achieved by defining an integrated global schema and by utilizing a single global
query language. Besides being read-only, MULTIBASE does not implement controls
to ensure that when reading data from one site, other required data at another site is
not being updated—because most systems do not make concurrency control services
available to an external process. The global query language DAPLEX is based on
the functional data model.’ This model consists of entity sets and functions between
them, and models object types of concern and their characteristics. The schema ar-
chitecture is shown in Figure 15.14.

Resolving data and naming inconsistencies and any other incompatibilities in the
preexisting databases are functions of the MULTIBASE system. For this reason an

>The discussion here is based on (Land 82).
3See (Ship 81) for details on DAPLEX and the functional data model.
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integration schema called the auxiliary schema is specified. The auxiliary schema
describes a DAPLEX auxiliary database that is maintained by an internal DBMS,
which is part of MULTIBASE. It contains data unavailable in any of the host
DBMSs, or data needed to solve incompatibilities. Examples of such data are the
following: statistics to determine which data values should be used in case of conflict;
conversion tables for performing data transformations that can’t be done via simple
arithmetic manipulations. Furthermore, if two sites have, say, EMPLOYEE data but
only one site has an EMPLOYEE.Phone_No, the missing phone number data can be
added to the auxiliary database. This is in addition to the global and local schema
(both specified using DAPLEX) and a local host schema. The local host schema is
the schema description in the local DBMS language.

Besides the language and schema definition systems, MULTIBASE also pro-
vides a query processing system. The query processing system incorporates the local
data interface and local DBMS. At the global level are the query translator and query
processor subsystems. The query translator transforms the global query into subquer-
ies over the local and auxiliary schema. The global query processor chooses appro-
priate query optimization criteria and coordinates the local query executions. The
optimization plan includes data movement between sites and the integration of the
results from the sites. '

Local queries are sent to the local sites and are subjected to local query optimi-
zation. These locally optimized queries are then translated into queries over the local
host schema of the host DBMS.

Each of these tasks is performed at different levels. Figure 15.15 displays the -
MULTIBASE architecture, which shows the two major components, the global data
manager (GDM) and local database interface (LDI). The user submits queries to
the global data manager, which is responsible for global query translation and opti-
mization. It receives results from the local sites and performs any processing neces-
sary to output the result. At each local site is a local database interface module that

Figure 15.13 MULTIBASE architecture (adapted from [Land 82]).
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Distributed Databases

appropriate modifications. Detection of deadlock requires the generation of global
wait-for graphs, either directly or indirectly. The deadlock prevention method based
on schemes for a centralized system may be used. The problems of security and
protection are similar to those of a centralized system.

distributed database
global transaction
subtransaction

local transaction

distributed database
management system

(DDBMS)
wide area network
long haul network
local area network (LAN)
star topology
mesh connection
" bus network
ring topology
synchroneus time-division
_multipléxing (SDM)
time-division multiplexing

cy division multiplexing

reservation
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carrier sense multiple access
with collision detection
(CSMA/CD)
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star ring

bridge

gateway

network partitioning
replication

location transparency

Exercises

fragmentation

disjoint fragmentation

fragmentation transparency

vertical fragmentation

horizontal fragmentation

mixed fragmentation

disjoint vertical fragmentation

disjoint horizontal
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nondisjoint vertical
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nondisjoint horizontal
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system catalog
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caching the remote catalog
global naming

print name
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semijoin
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query graph

cyclic query
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local wait-for graph (LWFG)
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majority locking
primary site locking
distributed two-phase locking
distributed commit
blocking

two-phase commit
voting phase
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phantom deadlock
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probe

intercontroller edge
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probe computation
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local scheme
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conservative timestamp

_ transaction class

conflict analysis graph
master site

apprentice site

global data manager (GDM)
local database interface (LDI)
transformer

optimizer

decomposer

filter

monitor

18.1

Explain why the query proée;sing techniques discussed in this chapter would need to be

modified for a distributed system running on a local area network. In your opinion, which of
the three costs, communication, ‘O, or CPU, are likely to dominate in a local area network
environment? Justify your answer.
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18.2 What are the advantages of horizontal fragmentation? How ic query evaluation complicated
or simplified by horizontal fragmentation? Design an algorithm to perform the join of two
relations, R and S, both of which are horizontally fragmented. Account for the network to be
either wide area or local area. Create some arbitrary data for the relations and their
fragments. Distribute the fragments over a number of sites. Test your algorithm.

18.3 For.exercise 2, modity your algorithm to use the semijoin technique.

18.4 Under what conditions is R DX S = S D< R?

18.3 How can the optimistic method presented in Chapter 12 be applied to concurrency control in
a DDBMS? Discuss the relative advantages and disadvantages of the conservative timestamp
and optimistic methods.

18.6  The validation phase of the optimistic method of a transaction may be checked against
already committed transactions—the ‘‘committed validation technique,”’ or the currently
active (but not committed) transactions—the ““active validation technique.’ Discuss the
relative merits of these validation techniques for the optimistic concurrency control scheme
for a DDBMS.

18.7  Using the library example discussed in Chapters 8 and 9, create a suitable distributed
database. Indicate how the queries in those chapters would be handled.

18.8  Suppose a single copy of data items A and B is stored at sites S, and S,, respectivel
Consider the schedule for transactions T, and T, given in Figure P. Why is the 5¢f§
serializable, even though two-phase locking is not used?

D ————— .
Figure P Schedule for Exercise 15.8.
site S, site S,

Time Transaction [ransaction Transaction

t Tisi Tasi Tis2

t Lockx(A)

ty Read(A)

ty A:=A -100

ts Write(A)

t Unlock(A) Unlock(B)

t; Lockx(A) Lockx(B)

tg Read(A) Read(B)

ty A:= A + 200 B:= B + 100

tio Write(A) Write(B)

ti Unlock(A) Unlock(B)

15.9 . Consider a token approach to locking. Any number of read tokens can exist for a data item,
but only one write token can exist, and that only if no read tokens are present. A transaction
manager (TM) at a site can grant a read or write lock to a transaction at that site if the TM
has a read or write token for the data item. Indicate the sequence of messages required
between sites to allow transaction T runring at site S to obtain a write lock on data item A.

15.10  Consider the ronowing scheme to detect deadlock in a distributed database system. Each site-

maintains an LWFG with the addition of a node called T., (see Figure Q). T., is to depict
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Chapter 16  Current Topics in Database Research

In a knowledge base system, the emphasis is placed on a robust knowledge
representation scheme and extensive reasoning capability. Robust signifies that the
scheme is rich in expressive power and at the same time it is efficient. In a DBMS,
emphasis is on efficient access and management of the data that model a portion of
the real world. A knowledge base system is concemed with the meaning of infor-
mation, whereas a DBMS is interested in the information contained in the data:
However, these distinctions are not absolute.

For our purposes, we can adopt the following informal definition of a KBMS.
The important point in this definition is that we are concerned with what the system
does rather than how it is done.

 Definttion:

. thc level of a human expert in this domam

A knowledge base management system is a computer system that manages the
knowledge in a given domain or field of interest and exhibits reasoning power to

16.3

A KBMS, in addition, provides the user with an integrated language, which
serves the purpose of the traditional DML of the existing DBMS and has the power
of a high-level application language. A database can be viewed ay a very basic
knowledge base system insofar as it manages facts. It has been recogmzed that there
should be an integration of the DBMS technology with the reasoning aspect in the
developinent of shared knowledge bases. Database technology has already addressed
the problems of improving system performance, concurrent access, distribution, and
friendly interface; these features are equally pertinent in a KBMS. There will be a
continuing need for current DBMSs and their functionalities coexisting with an inte-
grated KBMS. However, the reasoning power of a KBMS can improve the ease of
retrieval of pertinent information from a DBMS.

Knowledge and Its Representation

To solve a problem (i.e., carry out an intelligent activity) we need three compo-
nents:

" ® A model or a symbolic representation of the concepts of the domain of interest.

® A set of basic operations on this symbolic representation to generate one or
more solutions to the problem.
® An evaluation method to select a solution from the set of possible caudidates.

mrepresentauon scheme must be able to register the sigmncant characteristics
of the problem domain. These features of the problem domain must be easily acces-
sible for appropriate manipulations.

«

3A. Newell & H. A. Simos, **Computer Science as Empirical Inquiry: Symbols and Search.”* ACM 10th Turing Lecture—
1975, CACM 19(3), March 1976, pp. 113-126.
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A natural language is an example of a symbolic representation scheme. Using
this scheme, knowledge has been represented in folklore and more recently using the
written word and recorded speech and image. These forms of representing knowledge
have been developed over thousands of years. Natural language has very high ex-
pressive power. However, this form of representation, though suitable for humans,

. is either inappropriate or requires an enormous amount of resources for use in a
computer-based system.

A knowledge base systemn contains knowledge about a particular domain. In
addition, it contains a certain amount of general knowledge. The latter includes the
pertinent world knowledge applicable to the domain and some degree of so-called

-commonsense knowledge. For instance, a knowledge base system containing infor-
mation about diseases and diagnoses must have knowledge of the different units of
measurements of mass, length, temperature, concepts of nearness, normal, higher,
lower, faster, slower, and so on. .

Just as beauty is in the eye of the beholder, meaning is not contained in the
messa’e, but is constructed around it by the recipient. For example, if we are pre-
sented with the statement ‘‘Jumbo is an elephant,’”’ we conjure up a picture of an
elephant; we know that it is large, with a trunk and tusks and huge flapping ears. In
order to make this addition to the simple statement, we recalled this common knowl-
edge that we acquired during our life. If we are then presented with the statement
“‘Jumbo lives in a teacup,”’ we will think either (a) the statements are from a fairy
tale o1 (b) the statements are inconsistent with what we know about elephants and
cups in the real world. We know from experience that elephants are large animals, a
normal teacup is too smiall to hold an elephant, and normally we don’t put elephants
in teacups! 4 ,

One of the requirements of any knowledge representation scheme is that it must
allow the associated knowledge about a concept or statement to be easily retrieved
and empluved to enable the knowledge base system to understand and reason. The
coneept1f “using association in retrieving information is a very old one; it can be
traced back to the time of Aristotle. The use of association in database applications
in the form of associative or intelligent memories has also been investigated. How-
ever, the use of asseciative memory* to model human memories for intelligent com-
puter systems is more recent. The efficient access to associated knowledge in a par-
ticular situation need not be in a form similar to human .memory; nevertheless, the
result should be useful so that related concepts, associated both explicitly and implic-
itly, can be employed in inferences.

‘We not only know something, we know that we-know it and have developed a
certain degree of confidence in nsing the knowledge correctly ¢expertise). Our ability
to read a map, our sense of orientafion, and knowledge. of these abilities give us the
confidence to drive to an unknown city and find an-address. Similarly. the knowledge
base system must have knowledge about the knowiedge representation schieme being
used and how it can be manipulated in the.reasoning process. Such knowledge, called
metaknowledge, can be compared to the metadata used in a database system.

The knowledge base system must be able to deal with incomplete knowledge,

*An associative memory system has. logic associated with each word or each bit of everv word. This logic is used to simulta-
neously examine the contents of the enfire memory and matching words are flagged.
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; ﬂm 16.2  Inheriting and overriding properties.

AKO AKO

(] [t

The AKO link can also be used to provide specialization or a classification or
taxonomy in the reverse direction. In Figure 16.1 the AKO link provides a relation-
ship between two generic nodes and the IS_A link provides it between a generic and
an individual node. Thus, the generic nodes, human and mammal, are connected by
an AKO arc to show the relationship that the human is a type of mammal. The
relationship between a node representing an individual, Jumbo, and the generic node,
elephant, is provided by an IS_A arc. In Figure 16.2, the node Jumbo inherits the
properties of the elephant, Indian, and male nodes.

The semantics of an action, for instance, ‘‘John gave Mary a book yesterday,"’
can be represented as shown_in Figure 16.3.

In addition. to assigning the meaning to the arcs in the network, the use of a
semantic network for knowledge representation requires that procedures using the
semantic network correctly interpret the meaning of these arcs. The assigning of
meaning to the arcs is ad hoc and a wide variation of network-based schemes have

been proposed, along with procedures to interpret them. In spite of a lack of stan-

Figure 16.3  Assigning a meaning to an arc.
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16.3.2
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£75 001,
First-Order Logic (Predicate Logic) \

A proposition is a declarative (or assertive) sentence, e.g., ‘‘It is snowing,”’ ‘‘Rags
is a dog.”’ Declarative sentences are distinguished from interrogative and imperative
sentences. An interrogative sentence asks a question; an imperative sentence is a
directive or command.

Propositional logic is concerned with establishing tne validity of a proposition
in light of a given set of propositions. It establishes whether the proposition is true
or false, relative to the given set. (The propositions in the set could be either true or

false. It is, however, not in the realm of logic to establish the truthfulness of each

statement in the given set of propositions.) Simple propositions can be combined
using the sentential connectives and, or, not, implies, equivalent, and so on. An
example of a combined proposition, which is always true, is the following: “‘If ele-
phants are mammals, and if Jumbo is an elephant, then Jumbo is a mammal.”’

Propositional calculus is, in effect, computing with propositions. Given a set
of propositions or axioms known to be true (or false), propositional calculus uses
rules of inference to determine whether a given proposition. is true or false. Let us
use X, Y, Z, etc. to denote propositions; for instance, X may be the proposition
*‘Jumbo is an elephant.”” The first rule of inference, called modus ponens, allows
us to infer that proposition Y, ‘‘Jumbo is a mammal,’’ is true under the condition
that proposition X is true, and hence X logically implies Y (written as X — Y).
Thus, given that ‘‘Jumbo is an elephant’’ (X) is true, and ‘‘Jumbo is an elephant’’
implies ‘‘Jumbo is a mammal,”’ which is also true, then ‘‘Jumbo is a mammal’’ is
true. That is, if X and X — Y are both true, Y is also true. In the above example Y
is the proposition ‘‘Jumbo is a mammal’’.

The second rule of inference is the chain rule, which allows ‘us to infer a new
implication from known implicaitions; thus, if X—>Yand Y > Z, then X —> Z.

Mathematical logic, just like any other formal science, uses a language to ex-
press statements or formulas. The semantics of these statements are well defined.
Mathematical logic also uses a theory of proofs so that statements can be proved to
be correct or false. One method of proving the truthfulness or falsity of a proposition
is called reductio ad absurdum. In this method the known propositions or axioms
are appended with the negation of the proposition to be proved. I the resulting set
is inconsistent, the proposition cannot be false. A major problem with this approach
is that as the number of propositions ircreases, the number of combinations to be
investigated increases in an exponential manner and the computation time becomes
astronomical.

Propositions that specify a property consist of an expression that names an in-
dividual object and an expression, called the predicate, that stands for the property
that the individual object possesses. We use the lowercase symbols from the end of
the alphabet to denote variables, those from the beginning of the alphabet to denote
constants, and uppercase letters to denote predicates. Thus P(x), where x is the ar-
gument, is a one-place or monadic predicate. DBMS(x) and COMPANY(y) are ex-
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16.3.3

In a Hom clause theic is only one conclusion. PROLOG (PROgramming in
LOGic) is a programming language based on the Horn clause. The human reasoning

process is generally considered to be similar to the scheme used in logic. Logic

results in a precise and flexible knowledge representation scheme that is easy to
formulate and understand. The disadvantages of using logic are the lack of indexing
or associative capability, the handling of dynamic and incomplete knowledge, and
the intractability of computations involved in logic-based deductive inferences. In a
logic-based knowledge representation, the processing is separated from the knowl-
edge representation. The processing part, which determines the utility of the system,
is usually implemented by theorem-proving techniques; however, this approach may
not be useful for all applications. Another drawback of logic- -based representation
schemes is that heuristic or rule-of-thumb type knowledge may not be expressed in
logic. In addition, the following assumptions have to be made in this processing (Gall
84), (Reit 84):

® Closed world assumption (CWA), which states that facts not known to be true
are false.

® Unique name assumption (UNA), which states that objects are uniquely
identified.

¢ Domain clesure assumption (DCA), which states that no other objects or
instances of objects other than the known ones exist.

Frames

The frame is another knowledge representation scheme used to represent the knowl-
edge from a limited domain of stereotyped concepts or events. The concept of frames
evolved from observations gleaned by psychologists as to the method humans use to
interpret new situations. When confronted with an unknown object from a category
of objects already experienced, we expect certain similarities and accept certain dif-
ferences. We know how to handle these differences. We know what to expect and
what to do if these expectations don’t materialize. Thus, when we drive to a new
city, we expect to see parks, buildings, streets, street signs. We know the usual
locations of street signs and the correspondence between a street and a sign when a
number of signs are posted on the same signposts. We also know what to do if a
sign is missing at an intersection.

A frame (see Figure 16.5), is a data structure representing the collection of the
expected and/or predicted description of a stereotype object, action, or event. Each
important feature of the object is held in a slot. An optional procedure can be at-
tached to a slot to introduce procedural information or specify consistency con-
straints. The frame also contains the object’s relationship to other objects, these being
represented by frames as well. The latter feature gives a frame a semantic network—
like property. The description of the object includes a number of important features
of the object and the relationships between other descriptors.

In addition to the predicted description of the various features of the object being
represented, the frame may contain information such as the level of confidence as-
signed to the descriptor, the default values, alternate values (or their range) for de-
scriptors, and variations in the descriptors that can be associated with the frame. The
descriptors or slots can allow the inheritance of properties from a related frame. In
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‘Figure 16.8  Frames

g Slota h:’:;;, Procedures a
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Figure 16.6, the frame Bungalow is a specialization of the frame Building and inher-
its from Building descriptors such as walls, doors, windows, roof. The slot or de-
scriptor itself can be a frame. Thus, the descriptor window can have descriptors of
its own, for example, size and type.

In addition, descriptors could have appropriate reasoning or inferencing proce-
dures attached. These procedures are triggered or executed whenever the descriptors
are filled in, modified, or matched to glean precompiled knowledge.

Frames have been used extensively to represent visual knowledge and knowl-
edge about natural languages.

16.3.4  Rule-Based Systems (Production Systems)

The basic idea in production systems is the coupling of a condition with an appro-
priate action. Each such condition-action pair is called a rule, production rule, or
simply a production. An example of a production is given below:

If condition then action

The condition part of a production expresses the conditions under which the rule
is valid; the appropriate action to be taken is given by the action part. The action
part of the rule changes the state of the system and can introduce new facts. The
condition part of the rule is known as an antecedent and the action part, the conse-
quent. An example of a production rule for the game of hockey, involving a team
trailing by one goal in the ultimate minute of the game, can be expressed as a pro-
duction rule as follows:

"I trailing by one goal and

remaining time-to-play in game is less than one minute and

play is in opponent’s zone
then replace goalie by forward.
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Figure 16.6  Frame representation of different types of buildings.
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Slot 2 " Slot2
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cement black brick veneer
Slot 4 S Slot 4
flat roof .- shingle roof
Slot 5 Slot5
glass wall central atrium douple—clad
-Slot 6 g Slot 6 Slot 6

revolving 100 stores e ; cedar door

A production-based sysiem consists of a set of production rules, a data structure
that models the system’s current state, and a control subsystem or interpreter that
interprets the current state and controls its activity by initiating appropriate action. A
rule is said to be enabled or triggered when the condition part of the rule is satisfied
by the current state of the system. An enabled rule is said to be fired if the action
part of a rule is executed. If the system status is such that more than one rule is
triggered, the interpreter may be required to fire one or more of these simultaneously
enabled rules; this is referred to as a conflict resolution. The conflict resolution can
be cnacted using its own set of productions. It uses criteria such as priority or rank-
ing, prior selection, arbitrary or random choice, or doing all actions in parallel. The
order in which the conditions are examinzad can be determined a priori or could be
adjusted dynamically. The action part can be a single action or a set of procedures
that will change the status of the system. The latter change can include disabling a
subset of the existing productions and enabling other productions.
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K

An example of a rule-based system is given below., This system examines the
causes and the corrective actions to be performed after failing to sfart a car. The
execution of each action will modify the state of the starting system unaer consider-
ation and if there is more than one problem, all the corrective actions will have 10
be taken.

if starter cranks the engme very slowly
then problem may one or more of: extreme cola
temperature, battery, cables, connections, voltage
regulator, alternator; use jumper cable to start
if sanier does not crank but solenoid operates
then check cables and tighten and clean terminals and
check battery voltage
it problem is low battery voltage
then problem may be battery: check specific gravity and
replace if not acceptable; ' .
problem may be loose, worn, or broken alternator
belt: do a visual inspection and if belt is okay,
tighten ‘belt, otherwise- replace it;
problem may be cables: visual inspection, clean
and tighten connections, and replace broken
connectors or cables;
‘problem may be voltage regulator: check ana
replace;
problem may be alternator: check and repair or
replace alternator;
problem may be shorts in electrical system: locate
and correct '
if problem loose or worn alternator pejt
“then tighten or replace alternator belt
if problem is battery
then check specific gravity and if acceptable charge
otherwise replace battery
if problem is voltage regulator
then replace voltage regulator .
if problem is alternator
then repair or replace alternator
if battery, cables, and connections are good, solenoid
operates, but starter does not crank or cranks
slowly
then replace the starter )
if battery, cables, and connections are good but solenoid
does not click
then check ignitivn swich to solenoid circuit and
correct malfunctions
if banery, cables, connections, and ignition switch to
solenoid circuit are good but solenoid do¢s not
click
tnen replace solenoid
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Deductive databases are also referred to as logic databases, deductive relational
databases, and virtual relational databases. A relational database is a subset of a
deductive database.

Up to now we have defined a relation as a set of tuples, i.e., by its extension.
The set of tuples can be called the elementary facts, and the relation a base predicate.
These sets of facts, which we have referred. to- as: a database, are essentially an
extensional database. In the extensional database we define the set of tuples that
satisfy a relation. We can also define a relation intensionally by specifying some set
of rules. These rules, defining the intensional database, are expressed as well-formed
formulas in first-order logic. We can thus consider a database as consisting of a set
of rules (or laws) and a set of tuples. The intensional database supplements the ex-
tensional one with rules that allow other facts to be derived from those explicitly
stored in the extensional database.’

Example 16.2 Let the extensional database consist of a parent relation, i.c., a tuple (or
fact) of the parent relation tells us the name of the parent of some person.
If we also need grandparent names, we can either store the name of the
grandparents or—from our knowledge of who the grandparents are—write a
derivation rule: The grandparent of X is the person Y in that Z is the parent
i of Xand Y is the parentof Z. W

If we wanted to find the ancestors or cousins of a person we can specify these
as rules. Obviously we save considerably on storage, but more importantly we in-
cicase the usability of our database.

Consider the relation PARENT(X,Y) given in Figure 16.4. It represents the fact
that Y is a parent of X and is in the extensional database. To find the descendants of
an individual, we have to specify a number of rules. The descendants can be speci-
fied as follows:

X is a descendant of Y if Y is a parent of X

X is a descendant of Y can be represented as DESC(X,Y), which can be inter-
preted as a relation DESC having two attributes X and Y. We can write this rule as
an implication:

PARENT(X,Y) — DESC(X,Y)

>We can go even further ana consider a database as not having an extension but as consisting entirely of axioms. The exten-
sion counterpart could be a set of particularization axioms (to specify the CWA, UNA, and DCA) (Gall 84), (Reit 84).
Databases have been characterized by two basic approaches, the model-theoretic view (MTV) and the proof-theoretic view

(PTV). In the MTV, the database is a model of a first-order theory ‘and queries and integrity constraints are formulas to be
evaluated on the model using the semantics of truth. Mode! here is in terms of some set of axioms (in the form of integrity
constraints) and an mterpremmn that makes these axioms true. Queries are evaluated in the MTV under the CWA, UNA, and
DCA. In the PTV, the database is a first-order theory (i.c., we try to spell everything out with formulas) and integrity con-
straints and' queries are theorems:to be proved. One dxffcnencc between the MTV and the PTV is that with the former we can
add data (a tuple) to the database and still have a model of the same theory i.c., the model does not have to be changed)
while with the latter a different theory would result.

The PTV is a formalization of the concept of the deductxve database and not mtended to be directly used as the basis of a
DBMS lmplcmcntauon



16.4  Deductive Databases 739

The above rule gives us the immediate d

. escendants. How ‘
descendants using a recursive rule: ever, we can find other

1s a parent « f X and a descendan

t of Y, then X is a descendant of Y
PAREN~X.Z) \ DESC(Z,Y) — DES

The PARENT relation z1a the two rules can be used to derive the DESC relation
and answer queries such as finding all the descendants of an individual.

Example 16.3 Consider the PARENT relation of Figure 16.4. We can find all the descen-
dants using the above two rules. Initially the DESC relation is empty. We
apply -the first rule, PARENT(X,Y) — DESC (X.,Y), and get the DESC
relation (Figure A), which is the same as the PARENT relation.

Figure A DESC relation after the application of the first rule.
DESC
X Y
Roy Frank
Jerry Frank
Myma Ruth
Roy Ruth
Lynn Roy ics{ MANGALORE
Lynn Rachel - 575 C01.
Justin Lynn
Janet Myma
Drew Sheila

Pavan Sheila
Sheila Frank
Frank George

Now we apply the second rule. This involves the natural join of PAR-
ENT (X,Y) and DESC(Y,Z) followed by a projection on the attributes XZ.
The new tuples, shown in Figure B, are generated for the DESC relations
as a result of the join. (Note: we are renaming the variables in the figure.)

We repeat this step of applying the second rule until no new tuples are
added to DESC. The new tuples generated after each application are shown .
in Figures C and D. No new tuples are generated aftey the third application
of the second rule, so the resulting DESC relation gives all the descendants
of a person. :

To answer a query such as *‘Find all the descendants of George.”’ we
do a selection on the DESC(X,Y), relation with the folldwing query:

'"X(U'Y = GeorgeDESC)
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]
To find all products-and their constituent products (at the lowest level),
we require the following additional rule. This rule is recursive:

PRODUCT (P,C) /A CONSTITUENT (C,S) — CONSTITUENT (P,S)

Here we are defining the rule that an objecti8 is a constituent of an object
Piif it is a subproduct of-P, or it is a constitutent of an object C, which is a
subproduct of P. W

Employees who work together can be derived as follows:

Example 16.5 | Consider the relation ASSIGNED_TO (Prod#,Emp#), which gives the

16.5

employees assigned to a given project. We can find all employees who have
worked together on a project by using the following rule:

ASSIGNED_TO (P,E,) /A ASSIGNED_TO (P.E;) —
TOGETHER(E,.E;) ®

We can see that the above rules in the form of logic expressions allow us to
express recursive queries. This adds to the power of database querying as well as
specifying the intensional database.

IfPy,. . ., P,and Q are atoms, then =P, \/ . . . \/ =P, \/ Q (with a naxi-
mum of one unnegated atom) is a Horn clause. The Horn clause with one positive
atom is said to contain one conclusion. The conclusion is also known as the head.
The atoms Py, . . ., P, specify the conditions to be satisfied and are known as the
body of the clause. A Horn clause with no positive atom has no conclusions. A Horn
clause with no head may be thought of as integrity constraints, i.e., P, A . . . A
P, — ¢ can be interpreted as: (P, and P, and . . . P,) is a violation of an integrity
constraint. For example, no individual can be both a father and a mother nor a
brother and sister of another individual. This integrity constraint may be specified as:

brother (x,y) /\ sister(x,y) — ¢

Horn clauses can be expressed easily in PROLOG. If the conditions Py, . . .,
P,, imply more than one conclusion, i.e., Q is of the form Q; \/ . . . \/ Qn, We
write these as m Hom clauses.

In this section we have introduced a powerful extension to the relational data-
base model. Coverage in greater depth is beyond the scope of this text. We give
references to relevant literature in the bibliographic notes.

'Expert SVstems

Expert systems, also called knowledge base systems, are computer systems designed
to implement the knowledge and reasoning used by experts in a p(arhcular domain to
solve problems in that domain. Knowledge in these systems is obtained from inter-
views with human cxpel‘ts and represents known procedures, usual practice, heuris-
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Figure 16.8

tics, and rules of thumb. This knowledge is usually implementedanas a set of rules,
similar to those given in the car-starting example. These computer systems, as do
the human experts, use logical inference procedures and compiled production rules
(rules of thumb). The explicit domain knowledge, the so-called institutional mem-
ory, is accessible by the expert system and along with some form of reasoning gives
it artificial intelligence. Unlike a human expert, this codified knowledge is of a more
permanent nature.

The structure of an expert system, which is built around an appropriate repre-
sentation of the domain knowledge of an expert, is shown in Figure 16.8. Many
expert systems use productions or rules to represent the domain knowledge. The
inference system uses the knowledge and applies inference procedures to infer facts
not explicitly represented in the knowledge base to solve problems posed by the user.
The inference system, in addition, provides the user with the steps used in the rea-
soning procedure to arrive at a solution to the problem. The user interface is respon-
sible for presenting the user with an easy-to-use interface, and generates responses
and understandable explanations to the queries posed by the user..

Abductive reasoning is used in expert systems for applications in areas such as
medical or fault diagnostics. Medical diagnostics determines the likely cause for a
patient’s symptoms. The diagnosis may be multiple, there being a certain level of
confidence associated with each possible diagnostic and each level having associated
with it a subset of symptoms. Human judgment, along with suggested additional
tests, may be required to confirm or rule out some of these multiple diagnoses. For
instance, when a starting problem is encountered with the starter cranking the engine
very slowly, the diagnosis is that there is a problem with one or more of the follow-
ing components: extremely cold temperatures, alternator, battery, belt, cables, con-
nections, fuse link, or regulator. Further tests in the form of visual inspection, spe-
cific gravity tests, battery voltage, voltage across the battery while the engine is
running, or output current from the alternator are required to make a final diagnosis -
of the problem. In a rule-based expert system, the current known status of the system
is matched with the rules and the actions corresponding to one or more of the
matched rules are executed, i.c., the rules are fired. As a result of the firing, the
state of the system changes.

However, not all expert systems deal with multiple answers or uncertainty. Pro-
duction or rule-based systéms can be deductive systems. Such is the case when the

An expert system,
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Figure 16.10 Backward chaining.
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Expert Database Systems: Integration of Expert
Systems in Database Applications

Expert systems have been developed as stand-alone systems. A stand-alone expert

'system may be required to access data from a database as an ordinary application

program. With an integrated approach, the expert system is integrated with the
DBMS, as shown in Figure 16.11. In addition to traditional data, the system handles
textual and graphical data as well as knowledge. (It must be pointed out that no such
integrated system exists to date.) Such an integrated system will be called upon to
perform the traditional DBMS functions and use the inference system in aspects of
abductive, inductive, and deductive reasoning. The integrated system needs distri-
bution and concurrent access, and at the same time provides enhanced integrity,
security, and reliability.

There are obvious advantages in bringing ruie-based knowledge representation
and reasoning capability to database applications and traditional data processing
tasks. The database can be used to store the known facts about objects and events as
well as the rules tequnred by the expert system. An ordmary database query- not
requiring ‘any inference system service could be. handled more efficiently by the tra-
ditional DML and database ‘manager component of the multimedia database and

A
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Figure 16.11

Integrated expert database system.
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knowledge base system; the user imerface can forward such queries directly to this
subsystem.

The expert system component of such an integrated expert database system can
be used to provide a means for interpreting the responses to queries. including re-
sponses that contain, for instance, null values. It can be used with appropriate knowl-
edge to enhance the enforcement of integrity and security of the entire system.

Object Approach

In the object approach physical entities or abstract concepts of the real world are

represented by objects. Objects are distinguished by identifiers and they encapsulate

the characteristics or properties of the real world objects as well as their valid oper-
ations. The main difference between objects used in object-oriented programming
and those in object-database is the persistence. Objects in object-oriented program-
ming persist only for the duration of the program while those in obiect-database are
of a more permanent nature. _

It has been predicted that object-oriented programming will be the accepted soft-
ware development approach of the *90s just as structured programming was the style
used in the *70s. One of the results of the evolution of structured programming was
the strongly- typed requirement made -popular by Pascal and the top-down modular
approach.

Everyone has a different conception of object-oriented programming (OOP)
and the object mod=l (OM). One yardstick (meterstick!) used by almost everyone is
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Figure 16.13 Similarity of a black box and an object.
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The messages that an object unucrsiands depends on the nature of the object.
Objects for numbers understand a message that requests computation and reporting
the result. An object representing a thesaurus would understand a message to provide
the synonyms, antonyms, or homonyms for an entry in the thesaurus object.

The private memory of an object, which records the value of the data associated
with an object, is made available to other objects via the response generated by the
object. There is no way to open up an object and look inside it unless the object. via
its behavior to messages accepted by it, allows such persual.

Objects are uniform in the method used for communicating, which is by mes-
sage passing, and because no object is given special status. There is no distinction
between objects supplied by the system and those ¢reated by a user.

The basic problem in OOP is to determine the kinds of objects that should be
implemented. In addition, for each object, we have to Jetermine the messages it will
accept and the response provided by such messages. The choice of object depends
on the application and use of the system. Sending a message in OOP is equivalemt
to calling a procedure in procedural language or providing inputs to a black box (see
Figure 16.13).

16.7.2 Names and Identity

What's in a name?”®

Identity is such a simple and fundamental idea that it is hard to explain otherwise than
* through mere synonyms. To say that X and Y are identical is to say that they are the

“William Shakespeare, Romeo and Juliet, Act 1t scene 2.



